670 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			670 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
** $Id: ltable.c,v 2.118 2016/11/07 12:38:35 roberto Exp $
 | 
						|
** Lua tables (hash)
 | 
						|
** See Copyright Notice in lua.h
 | 
						|
*/
 | 
						|
 | 
						|
#define ltable_c
 | 
						|
#define LUA_CORE
 | 
						|
 | 
						|
#include "ltable.h"
 | 
						|
#include "lprefix.h"
 | 
						|
 | 
						|
/*
 | 
						|
** Implementation of tables (aka arrays, objects, or hash tables).
 | 
						|
** Tables keep its elements in two parts: an array part and a hash part.
 | 
						|
** Non-negative integer keys are all candidates to be kept in the array
 | 
						|
** part. The actual size of the array is the largest 'n' such that
 | 
						|
** more than half the slots between 1 and n are in use.
 | 
						|
** Hash uses a mix of chained scatter table with Brent's variation.
 | 
						|
** A main invariant of these tables is that, if an element is not
 | 
						|
** in its main position (i.e. the 'original' position that its hash gives
 | 
						|
** to it), then the colliding element is in its own main position.
 | 
						|
** Hence even when the load factor reaches 100%, performance remains good.
 | 
						|
*/
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#include "lua.h"
 | 
						|
#include "ldebug.h"
 | 
						|
#include "ldo.h"
 | 
						|
#include "lgc.h"
 | 
						|
#include "lmem.h"
 | 
						|
#include "lobject.h"
 | 
						|
#include "lstate.h"
 | 
						|
#include "lstring.h"
 | 
						|
#include "lvm.h"
 | 
						|
 | 
						|
namespace NS_SLUA {
 | 
						|
 | 
						|
/*
 | 
						|
** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
 | 
						|
** the largest integer such that MAXASIZE fits in an unsigned int.
 | 
						|
*/
 | 
						|
#define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
 | 
						|
#define MAXASIZE	(1u << MAXABITS)
 | 
						|
 | 
						|
/*
 | 
						|
** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
 | 
						|
** integer such that 2^MAXHBITS fits in a signed int. (Note that the
 | 
						|
** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
 | 
						|
** fits comfortably in an unsigned int.)
 | 
						|
*/
 | 
						|
#define MAXHBITS	(MAXABITS - 1)
 | 
						|
 | 
						|
 | 
						|
#define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
 | 
						|
 | 
						|
#define hashstr(t,str)		hashpow2(t, (str)->hash)
 | 
						|
#define hashboolean(t,p)	hashpow2(t, p)
 | 
						|
#define hashint(t,i)		hashpow2(t, i)
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** for some types, it is better to avoid modulus by power of 2, as
 | 
						|
** they tend to have many 2 factors.
 | 
						|
*/
 | 
						|
#define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
 | 
						|
 | 
						|
 | 
						|
#define hashpointer(t,p)	hashmod(t, point2uint(p))
 | 
						|
 | 
						|
 | 
						|
#define dummynode		(&dummynode_)
 | 
						|
 | 
						|
static const Node dummynode_ = {
 | 
						|
  {NILCONSTANT},  /* value */
 | 
						|
  {{NILCONSTANT, 0}}  /* key */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Hash for floating-point numbers.
 | 
						|
** The main computation should be just
 | 
						|
**     n = frexp(n, &i); return (n * INT_MAX) + i
 | 
						|
** but there are some numerical subtleties.
 | 
						|
** In a two-complement representation, INT_MAX does not has an exact
 | 
						|
** representation as a float, but INT_MIN does; because the absolute
 | 
						|
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
 | 
						|
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
 | 
						|
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
 | 
						|
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
 | 
						|
** INT_MIN.
 | 
						|
*/
 | 
						|
#if !defined(l_hashfloat)
 | 
						|
static int l_hashfloat (lua_Number n) {
 | 
						|
  int i;
 | 
						|
  lua_Integer ni;
 | 
						|
  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
 | 
						|
  if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
 | 
						|
    lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  else {  /* normal case */
 | 
						|
    unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
 | 
						|
    return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** returns the 'main' position of an element in a table (that is, the index
 | 
						|
** of its hash value)
 | 
						|
*/
 | 
						|
static Node *mainposition (const Table *t, const TValue *key) {
 | 
						|
  switch (ttype(key)) {
 | 
						|
    case LUA_TNUMINT:
 | 
						|
      return hashint(t, ivalue(key));
 | 
						|
    case LUA_TNUMFLT:
 | 
						|
      return hashmod(t, l_hashfloat(fltvalue(key)));
 | 
						|
    case LUA_TSHRSTR:
 | 
						|
      return hashstr(t, tsvalue(key));
 | 
						|
    case LUA_TLNGSTR:
 | 
						|
      return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
 | 
						|
    case LUA_TBOOLEAN:
 | 
						|
      return hashboolean(t, bvalue(key));
 | 
						|
    case LUA_TLIGHTUSERDATA:
 | 
						|
      return hashpointer(t, pvalue(key));
 | 
						|
    case LUA_TLCF:
 | 
						|
      return hashpointer(t, fvalue(key));
 | 
						|
    default:
 | 
						|
      lua_assert(!ttisdeadkey(key));
 | 
						|
      return hashpointer(t, gcvalue(key));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** returns the index for 'key' if 'key' is an appropriate key to live in
 | 
						|
** the array part of the table, 0 otherwise.
 | 
						|
*/
 | 
						|
static unsigned int arrayindex (const TValue *key) {
 | 
						|
  if (ttisinteger(key)) {
 | 
						|
    lua_Integer k = ivalue(key);
 | 
						|
    if (0 < k && (lua_Unsigned)k <= MAXASIZE)
 | 
						|
      return cast(unsigned int, k);  /* 'key' is an appropriate array index */
 | 
						|
  }
 | 
						|
  return 0;  /* 'key' did not match some condition */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** returns the index of a 'key' for table traversals. First goes all
 | 
						|
** elements in the array part, then elements in the hash part. The
 | 
						|
** beginning of a traversal is signaled by 0.
 | 
						|
*/
 | 
						|
static unsigned int findindex (lua_State *L, Table *t, StkId key) {
 | 
						|
  unsigned int i;
 | 
						|
  if (ttisnil(key)) return 0;  /* first iteration */
 | 
						|
  i = arrayindex(key);
 | 
						|
  if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */
 | 
						|
    return i;  /* yes; that's the index */
 | 
						|
  else {
 | 
						|
    int nx;
 | 
						|
    Node *n = mainposition(t, key);
 | 
						|
    for (;;) {  /* check whether 'key' is somewhere in the chain */
 | 
						|
      /* key may be dead already, but it is ok to use it in 'next' */
 | 
						|
      if (luaV_rawequalobj(gkey(n), key) ||
 | 
						|
            (ttisdeadkey(gkey(n)) && iscollectable(key) &&
 | 
						|
             deadvalue(gkey(n)) == gcvalue(key))) {
 | 
						|
        i = cast_int(n - gnode(t, 0));  /* key index in hash table */
 | 
						|
        /* hash elements are numbered after array ones */
 | 
						|
        return (i + 1) + t->sizearray;
 | 
						|
      }
 | 
						|
      nx = gnext(n);
 | 
						|
      if (nx == 0)
 | 
						|
        luaG_runerror(L, "invalid key to 'next'");  /* key not found */
 | 
						|
      else n += nx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int luaH_next (lua_State *L, Table *t, StkId key) {
 | 
						|
  unsigned int i = findindex(L, t, key);  /* find original element */
 | 
						|
  for (; i < t->sizearray; i++) {  /* try first array part */
 | 
						|
    if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
 | 
						|
      setivalue(key, i + 1);
 | 
						|
      setobj2s(L, key+1, &t->array[i]);
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */
 | 
						|
    if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
 | 
						|
      setobj2s(L, key, gkey(gnode(t, i)));
 | 
						|
      setobj2s(L, key+1, gval(gnode(t, i)));
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;  /* no more elements */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** {=============================================================
 | 
						|
** Rehash
 | 
						|
** ==============================================================
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
** Compute the optimal size for the array part of table 't'. 'nums' is a
 | 
						|
** "count array" where 'nums[i]' is the number of integers in the table
 | 
						|
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
 | 
						|
** integer keys in the table and leaves with the number of keys that
 | 
						|
** will go to the array part; return the optimal size.
 | 
						|
*/
 | 
						|
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
 | 
						|
  int i;
 | 
						|
  unsigned int twotoi;  /* 2^i (candidate for optimal size) */
 | 
						|
  unsigned int a = 0;  /* number of elements smaller than 2^i */
 | 
						|
  unsigned int na = 0;  /* number of elements to go to array part */
 | 
						|
  unsigned int optimal = 0;  /* optimal size for array part */
 | 
						|
  /* loop while keys can fill more than half of total size */
 | 
						|
  for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
 | 
						|
    if (nums[i] > 0) {
 | 
						|
      a += nums[i];
 | 
						|
      if (a > twotoi/2) {  /* more than half elements present? */
 | 
						|
        optimal = twotoi;  /* optimal size (till now) */
 | 
						|
        na = a;  /* all elements up to 'optimal' will go to array part */
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
 | 
						|
  *pna = na;
 | 
						|
  return optimal;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int countint (const TValue *key, unsigned int *nums) {
 | 
						|
  unsigned int k = arrayindex(key);
 | 
						|
  if (k != 0) {  /* is 'key' an appropriate array index? */
 | 
						|
    nums[luaO_ceillog2(k)]++;  /* count as such */
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Count keys in array part of table 't': Fill 'nums[i]' with
 | 
						|
** number of keys that will go into corresponding slice and return
 | 
						|
** total number of non-nil keys.
 | 
						|
*/
 | 
						|
static unsigned int numusearray (const Table *t, unsigned int *nums) {
 | 
						|
  int lg;
 | 
						|
  unsigned int ttlg;  /* 2^lg */
 | 
						|
  unsigned int ause = 0;  /* summation of 'nums' */
 | 
						|
  unsigned int i = 1;  /* count to traverse all array keys */
 | 
						|
  /* traverse each slice */
 | 
						|
  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
 | 
						|
    unsigned int lc = 0;  /* counter */
 | 
						|
    unsigned int lim = ttlg;
 | 
						|
    if (lim > t->sizearray) {
 | 
						|
      lim = t->sizearray;  /* adjust upper limit */
 | 
						|
      if (i > lim)
 | 
						|
        break;  /* no more elements to count */
 | 
						|
    }
 | 
						|
    /* count elements in range (2^(lg - 1), 2^lg] */
 | 
						|
    for (; i <= lim; i++) {
 | 
						|
      if (!ttisnil(&t->array[i-1]))
 | 
						|
        lc++;
 | 
						|
    }
 | 
						|
    nums[lg] += lc;
 | 
						|
    ause += lc;
 | 
						|
  }
 | 
						|
  return ause;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
 | 
						|
  int totaluse = 0;  /* total number of elements */
 | 
						|
  int ause = 0;  /* elements added to 'nums' (can go to array part) */
 | 
						|
  int i = sizenode(t);
 | 
						|
  while (i--) {
 | 
						|
    Node *n = &t->node[i];
 | 
						|
    if (!ttisnil(gval(n))) {
 | 
						|
      ause += countint(gkey(n), nums);
 | 
						|
      totaluse++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  *pna += ause;
 | 
						|
  return totaluse;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
 | 
						|
  unsigned int i;
 | 
						|
  luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
 | 
						|
  for (i=t->sizearray; i<size; i++)
 | 
						|
     setnilvalue(&t->array[i]);
 | 
						|
  t->sizearray = size;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
 | 
						|
  if (size == 0) {  /* no elements to hash part? */
 | 
						|
    t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
 | 
						|
    t->lsizenode = 0;
 | 
						|
    t->lastfree = NULL;  /* signal that it is using dummy node */
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    int i;
 | 
						|
    int lsize = luaO_ceillog2(size);
 | 
						|
    if (lsize > MAXHBITS)
 | 
						|
      luaG_runerror(L, "table overflow");
 | 
						|
    size = twoto(lsize);
 | 
						|
    t->node = luaM_newvector(L, size, Node);
 | 
						|
    for (i = 0; i < (int)size; i++) {
 | 
						|
      Node *n = gnode(t, i);
 | 
						|
      gnext(n) = 0;
 | 
						|
      setnilvalue(wgkey(n));
 | 
						|
      setnilvalue(gval(n));
 | 
						|
    }
 | 
						|
    t->lsizenode = cast_byte(lsize);
 | 
						|
    t->lastfree = gnode(t, size);  /* all positions are free */
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
 | 
						|
                                          unsigned int nhsize) {
 | 
						|
  unsigned int i;
 | 
						|
  int j;
 | 
						|
  unsigned int oldasize = t->sizearray;
 | 
						|
  int oldhsize = allocsizenode(t);
 | 
						|
  Node *nold = t->node;  /* save old hash ... */
 | 
						|
  if (nasize > oldasize)  /* array part must grow? */
 | 
						|
    setarrayvector(L, t, nasize);
 | 
						|
  /* create new hash part with appropriate size */
 | 
						|
  setnodevector(L, t, nhsize);
 | 
						|
  if (nasize < oldasize) {  /* array part must shrink? */
 | 
						|
    t->sizearray = nasize;
 | 
						|
    /* re-insert elements from vanishing slice */
 | 
						|
    for (i=nasize; i<oldasize; i++) {
 | 
						|
      if (!ttisnil(&t->array[i]))
 | 
						|
        luaH_setint(L, t, i + 1, &t->array[i]);
 | 
						|
    }
 | 
						|
    /* shrink array */
 | 
						|
    luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
 | 
						|
  }
 | 
						|
  /* re-insert elements from hash part */
 | 
						|
  for (j = oldhsize - 1; j >= 0; j--) {
 | 
						|
    Node *old = nold + j;
 | 
						|
    if (!ttisnil(gval(old))) {
 | 
						|
      /* doesn't need barrier/invalidate cache, as entry was
 | 
						|
         already present in the table */
 | 
						|
      setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (oldhsize > 0)  /* not the dummy node? */
 | 
						|
    luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
 | 
						|
  int nsize = allocsizenode(t);
 | 
						|
  luaH_resize(L, t, nasize, nsize);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
 | 
						|
*/
 | 
						|
static void rehash (lua_State *L, Table *t, const TValue *ek) {
 | 
						|
  unsigned int asize;  /* optimal size for array part */
 | 
						|
  unsigned int na;  /* number of keys in the array part */
 | 
						|
  unsigned int nums[MAXABITS + 1];
 | 
						|
  int i;
 | 
						|
  int totaluse;
 | 
						|
  for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
 | 
						|
  na = numusearray(t, nums);  /* count keys in array part */
 | 
						|
  totaluse = na;  /* all those keys are integer keys */
 | 
						|
  totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
 | 
						|
  /* count extra key */
 | 
						|
  na += countint(ek, nums);
 | 
						|
  totaluse++;
 | 
						|
  /* compute new size for array part */
 | 
						|
  asize = computesizes(nums, &na);
 | 
						|
  /* resize the table to new computed sizes */
 | 
						|
  luaH_resize(L, t, asize, totaluse - na);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** }=============================================================
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
Table *luaH_new (lua_State *L) {
 | 
						|
  GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
 | 
						|
  Table *t = gco2t(o);
 | 
						|
  t->metatable = NULL;
 | 
						|
  t->flags = cast_byte(~0);
 | 
						|
  t->array = NULL;
 | 
						|
  t->sizearray = 0;
 | 
						|
  setnodevector(L, t, 0);
 | 
						|
  return t;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void luaH_free (lua_State *L, Table *t) {
 | 
						|
  if (!isdummy(t))
 | 
						|
    luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
 | 
						|
  luaM_freearray(L, t->array, t->sizearray);
 | 
						|
  luaM_free(L, t);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Node *getfreepos (Table *t) {
 | 
						|
  if (!isdummy(t)) {
 | 
						|
    while (t->lastfree > t->node) {
 | 
						|
      t->lastfree--;
 | 
						|
      if (ttisnil(gkey(t->lastfree)))
 | 
						|
        return t->lastfree;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NULL;  /* could not find a free place */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** inserts a new key into a hash table; first, check whether key's main
 | 
						|
** position is free. If not, check whether colliding node is in its main
 | 
						|
** position or not: if it is not, move colliding node to an empty place and
 | 
						|
** put new key in its main position; otherwise (colliding node is in its main
 | 
						|
** position), new key goes to an empty position.
 | 
						|
*/
 | 
						|
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
 | 
						|
  Node *mp;
 | 
						|
  TValue aux;
 | 
						|
  if (ttisnil(key)) luaG_runerror(L, "table index is nil");
 | 
						|
  else if (ttisfloat(key)) {
 | 
						|
    lua_Integer k;
 | 
						|
    if (luaV_tointeger(key, &k, 0)) {  /* does index fit in an integer? */
 | 
						|
      setivalue(&aux, k);
 | 
						|
      key = &aux;  /* insert it as an integer */
 | 
						|
    }
 | 
						|
    else if (luai_numisnan(fltvalue(key)))
 | 
						|
      luaG_runerror(L, "table index is NaN");
 | 
						|
  }
 | 
						|
  mp = mainposition(t, key);
 | 
						|
  if (!ttisnil(gval(mp)) || isdummy(t)) {  /* main position is taken? */
 | 
						|
    Node *othern;
 | 
						|
    Node *f = getfreepos(t);  /* get a free place */
 | 
						|
    if (f == NULL) {  /* cannot find a free place? */
 | 
						|
      rehash(L, t, key);  /* grow table */
 | 
						|
      /* whatever called 'newkey' takes care of TM cache */
 | 
						|
      return luaH_set(L, t, key);  /* insert key into grown table */
 | 
						|
    }
 | 
						|
    lua_assert(!isdummy(t));
 | 
						|
    othern = mainposition(t, gkey(mp));
 | 
						|
    if (othern != mp) {  /* is colliding node out of its main position? */
 | 
						|
      /* yes; move colliding node into free position */
 | 
						|
      while (othern + gnext(othern) != mp)  /* find previous */
 | 
						|
        othern += gnext(othern);
 | 
						|
      gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
 | 
						|
      *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
 | 
						|
      if (gnext(mp) != 0) {
 | 
						|
        gnext(f) += cast_int(mp - f);  /* correct 'next' */
 | 
						|
        gnext(mp) = 0;  /* now 'mp' is free */
 | 
						|
      }
 | 
						|
      setnilvalue(gval(mp));
 | 
						|
    }
 | 
						|
    else {  /* colliding node is in its own main position */
 | 
						|
      /* new node will go into free position */
 | 
						|
      if (gnext(mp) != 0)
 | 
						|
        gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
 | 
						|
      else lua_assert(gnext(f) == 0);
 | 
						|
      gnext(mp) = cast_int(f - mp);
 | 
						|
      mp = f;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  setnodekey(L, &mp->i_key, key);
 | 
						|
  luaC_barrierback(L, t, key);
 | 
						|
  lua_assert(ttisnil(gval(mp)));
 | 
						|
  return gval(mp);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** search function for integers
 | 
						|
*/
 | 
						|
const TValue *luaH_getint (Table *t, lua_Integer key) {
 | 
						|
  /* (1 <= key && key <= t->sizearray) */
 | 
						|
  if (l_castS2U(key) - 1 < t->sizearray)
 | 
						|
    return &t->array[key - 1];
 | 
						|
  else {
 | 
						|
    Node *n = hashint(t, key);
 | 
						|
    for (;;) {  /* check whether 'key' is somewhere in the chain */
 | 
						|
      if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
 | 
						|
        return gval(n);  /* that's it */
 | 
						|
      else {
 | 
						|
        int nx = gnext(n);
 | 
						|
        if (nx == 0) break;
 | 
						|
        n += nx;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return luaO_nilobject;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** search function for short strings
 | 
						|
*/
 | 
						|
const TValue *luaH_getshortstr (Table *t, TString *key) {
 | 
						|
  Node *n = hashstr(t, key);
 | 
						|
  lua_assert(key->tt == LUA_TSHRSTR);
 | 
						|
  for (;;) {  /* check whether 'key' is somewhere in the chain */
 | 
						|
    const TValue *k = gkey(n);
 | 
						|
    if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
 | 
						|
      return gval(n);  /* that's it */
 | 
						|
    else {
 | 
						|
      int nx = gnext(n);
 | 
						|
      if (nx == 0)
 | 
						|
        return luaO_nilobject;  /* not found */
 | 
						|
      n += nx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** "Generic" get version. (Not that generic: not valid for integers,
 | 
						|
** which may be in array part, nor for floats with integral values.)
 | 
						|
*/
 | 
						|
static const TValue *getgeneric (Table *t, const TValue *key) {
 | 
						|
  Node *n = mainposition(t, key);
 | 
						|
  for (;;) {  /* check whether 'key' is somewhere in the chain */
 | 
						|
    if (luaV_rawequalobj(gkey(n), key))
 | 
						|
      return gval(n);  /* that's it */
 | 
						|
    else {
 | 
						|
      int nx = gnext(n);
 | 
						|
      if (nx == 0)
 | 
						|
        return luaO_nilobject;  /* not found */
 | 
						|
      n += nx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const TValue *luaH_getstr (Table *t, TString *key) {
 | 
						|
  if (key->tt == LUA_TSHRSTR)
 | 
						|
    return luaH_getshortstr(t, key);
 | 
						|
  else {  /* for long strings, use generic case */
 | 
						|
    TValue ko;
 | 
						|
    setsvalue(cast(lua_State *, NULL), &ko, key);
 | 
						|
    return getgeneric(t, &ko);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** main search function
 | 
						|
*/
 | 
						|
const TValue *luaH_get (Table *t, const TValue *key) {
 | 
						|
  switch (ttype(key)) {
 | 
						|
    case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
 | 
						|
    case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
 | 
						|
    case LUA_TNIL: return luaO_nilobject;
 | 
						|
    case LUA_TNUMFLT: {
 | 
						|
      lua_Integer k;
 | 
						|
      if (luaV_tointeger(key, &k, 0)) /* index is int? */
 | 
						|
        return luaH_getint(t, k);  /* use specialized version */
 | 
						|
      /* else... */
 | 
						|
    }  /* FALLTHROUGH */
 | 
						|
    default:
 | 
						|
      return getgeneric(t, key);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** beware: when using this function you probably need to check a GC
 | 
						|
** barrier and invalidate the TM cache.
 | 
						|
*/
 | 
						|
TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
 | 
						|
  const TValue *p = luaH_get(t, key);
 | 
						|
  if (p != luaO_nilobject)
 | 
						|
    return cast(TValue *, p);
 | 
						|
  else return luaH_newkey(L, t, key);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
 | 
						|
  const TValue *p = luaH_getint(t, key);
 | 
						|
  TValue *cell;
 | 
						|
  if (p != luaO_nilobject)
 | 
						|
    cell = cast(TValue *, p);
 | 
						|
  else {
 | 
						|
    TValue k;
 | 
						|
    setivalue(&k, key);
 | 
						|
    cell = luaH_newkey(L, t, &k);
 | 
						|
  }
 | 
						|
  setobj2t(L, cell, value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int unbound_search (Table *t, unsigned int j) {
 | 
						|
  unsigned int i = j;  /* i is zero or a present index */
 | 
						|
  j++;
 | 
						|
  /* find 'i' and 'j' such that i is present and j is not */
 | 
						|
  while (!ttisnil(luaH_getint(t, j))) {
 | 
						|
    i = j;
 | 
						|
    if (j > cast(unsigned int, MAX_INT)/2) {  /* overflow? */
 | 
						|
      /* table was built with bad purposes: resort to linear search */
 | 
						|
      i = 1;
 | 
						|
      while (!ttisnil(luaH_getint(t, i))) i++;
 | 
						|
      return i - 1;
 | 
						|
    }
 | 
						|
    j *= 2;
 | 
						|
  }
 | 
						|
  /* now do a binary search between them */
 | 
						|
  while (j - i > 1) {
 | 
						|
    unsigned int m = (i+j)/2;
 | 
						|
    if (ttisnil(luaH_getint(t, m))) j = m;
 | 
						|
    else i = m;
 | 
						|
  }
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
** Try to find a boundary in table 't'. A 'boundary' is an integer index
 | 
						|
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
 | 
						|
*/
 | 
						|
int luaH_getn (Table *t) {
 | 
						|
  unsigned int j = t->sizearray;
 | 
						|
  if (j > 0 && ttisnil(&t->array[j - 1])) {
 | 
						|
    /* there is a boundary in the array part: (binary) search for it */
 | 
						|
    unsigned int i = 0;
 | 
						|
    while (j - i > 1) {
 | 
						|
      unsigned int m = (i+j)/2;
 | 
						|
      if (ttisnil(&t->array[m - 1])) j = m;
 | 
						|
      else i = m;
 | 
						|
    }
 | 
						|
    return i;
 | 
						|
  }
 | 
						|
  /* else must find a boundary in hash part */
 | 
						|
  else if (isdummy(t))  /* hash part is empty? */
 | 
						|
    return j;  /* that is easy... */
 | 
						|
  else return unbound_search(t, j);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#if defined(LUA_DEBUG)
 | 
						|
 | 
						|
Node *luaH_mainposition (const Table *t, const TValue *key) {
 | 
						|
  return mainposition(t, key);
 | 
						|
}
 | 
						|
 | 
						|
int luaH_isdummy (const Table *t) { return isdummy(t); }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
} // end NS_SLUA
 |