1203 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			1203 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | ** $Id: lcode.c,v 2.112 2016/12/22 13:08:50 roberto Exp $ | ||
|  | ** Code generator for Lua | ||
|  | ** See Copyright Notice in lua.h | ||
|  | */ | ||
|  | 
 | ||
|  | #define lcode_c
 | ||
|  | #define LUA_CORE
 | ||
|  | 
 | ||
|  | #include "lcode.h"
 | ||
|  | #include "lprefix.h"
 | ||
|  | 
 | ||
|  | #include <math.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | 
 | ||
|  | #include "lua.h"
 | ||
|  | #include "ldebug.h"
 | ||
|  | #include "ldo.h"
 | ||
|  | #include "lgc.h"
 | ||
|  | #include "llex.h"
 | ||
|  | #include "lmem.h"
 | ||
|  | #include "lobject.h"
 | ||
|  | #include "lopcodes.h"
 | ||
|  | #include "lparser.h"
 | ||
|  | #include "lstring.h"
 | ||
|  | #include "ltable.h"
 | ||
|  | #include "lvm.h"
 | ||
|  | 
 | ||
|  | namespace NS_SLUA { | ||
|  | 
 | ||
|  | /* Maximum number of registers in a Lua function (must fit in 8 bits) */ | ||
|  | #define MAXREGS		255
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define hasjumps(e)	((e)->t != (e)->f)
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** If expression is a numeric constant, fills 'v' with its value | ||
|  | ** and returns 1. Otherwise, returns 0. | ||
|  | */ | ||
|  | static int tonumeral(const expdesc *e, TValue *v) { | ||
|  |   if (hasjumps(e)) | ||
|  |     return 0;  /* not a numeral */ | ||
|  |   switch (e->k) { | ||
|  |     case VKINT: | ||
|  |       if (v) setivalue(v, e->u.ival); | ||
|  |       return 1; | ||
|  |     case VKFLT: | ||
|  |       if (v) setfltvalue(v, e->u.nval); | ||
|  |       return 1; | ||
|  |     default: return 0; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Create a OP_LOADNIL instruction, but try to optimize: if the previous | ||
|  | ** instruction is also OP_LOADNIL and ranges are compatible, adjust | ||
|  | ** range of previous instruction instead of emitting a new one. (For | ||
|  | ** instance, 'local a; local b' will generate a single opcode.) | ||
|  | */ | ||
|  | void luaK_nil (FuncState *fs, int from, int n) { | ||
|  |   Instruction *previous; | ||
|  |   int l = from + n - 1;  /* last register to set nil */ | ||
|  |   if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */ | ||
|  |     previous = &fs->f->code[fs->pc-1]; | ||
|  |     if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */ | ||
|  |       int pfrom = GETARG_A(*previous);  /* get previous range */ | ||
|  |       int pl = pfrom + GETARG_B(*previous); | ||
|  |       if ((pfrom <= from && from <= pl + 1) || | ||
|  |           (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */ | ||
|  |         if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */ | ||
|  |         if (pl > l) l = pl;  /* l = max(l, pl) */ | ||
|  |         SETARG_A(*previous, from); | ||
|  |         SETARG_B(*previous, l - from); | ||
|  |         return; | ||
|  |       } | ||
|  |     }  /* else go through */ | ||
|  |   } | ||
|  |   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Gets the destination address of a jump instruction. Used to traverse | ||
|  | ** a list of jumps. | ||
|  | */ | ||
|  | static int getjump (FuncState *fs, int pc) { | ||
|  |   int offset = GETARG_sBx(fs->f->code[pc]); | ||
|  |   if (offset == NO_JUMP)  /* point to itself represents end of list */ | ||
|  |     return NO_JUMP;  /* end of list */ | ||
|  |   else | ||
|  |     return (pc+1)+offset;  /* turn offset into absolute position */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Fix jump instruction at position 'pc' to jump to 'dest'. | ||
|  | ** (Jump addresses are relative in Lua) | ||
|  | */ | ||
|  | static void fixjump (FuncState *fs, int pc, int dest) { | ||
|  |   Instruction *jmp = &fs->f->code[pc]; | ||
|  |   int offset = dest - (pc + 1); | ||
|  |   lua_assert(dest != NO_JUMP); | ||
|  |   if (abs(offset) > MAXARG_sBx) | ||
|  |     luaX_syntaxerror(fs->ls, "control structure too long"); | ||
|  |   SETARG_sBx(*jmp, offset); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Concatenate jump-list 'l2' into jump-list 'l1' | ||
|  | */ | ||
|  | void luaK_concat (FuncState *fs, int *l1, int l2) { | ||
|  |   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */ | ||
|  |   else if (*l1 == NO_JUMP)  /* no original list? */ | ||
|  |     *l1 = l2;  /* 'l1' points to 'l2' */ | ||
|  |   else { | ||
|  |     int list = *l1; | ||
|  |     int next; | ||
|  |     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */ | ||
|  |       list = next; | ||
|  |     fixjump(fs, list, l2);  /* last element links to 'l2' */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Create a jump instruction and return its position, so its destination | ||
|  | ** can be fixed later (with 'fixjump'). If there are jumps to | ||
|  | ** this position (kept in 'jpc'), link them all together so that | ||
|  | ** 'patchlistaux' will fix all them directly to the final destination. | ||
|  | */ | ||
|  | int luaK_jump (FuncState *fs) { | ||
|  |   int jpc = fs->jpc;  /* save list of jumps to here */ | ||
|  |   int j; | ||
|  |   fs->jpc = NO_JUMP;  /* no more jumps to here */ | ||
|  |   j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP); | ||
|  |   luaK_concat(fs, &j, jpc);  /* keep them on hold */ | ||
|  |   return j; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Code a 'return' instruction | ||
|  | */ | ||
|  | void luaK_ret (FuncState *fs, int first, int nret) { | ||
|  |   luaK_codeABC(fs, OP_RETURN, first, nret+1, 0); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Code a "conditional jump", that is, a test or comparison opcode | ||
|  | ** followed by a jump. Return jump position. | ||
|  | */ | ||
|  | static int condjump (FuncState *fs, OpCode op, int A, int B, int C) { | ||
|  |   luaK_codeABC(fs, op, A, B, C); | ||
|  |   return luaK_jump(fs); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** returns current 'pc' and marks it as a jump target (to avoid wrong | ||
|  | ** optimizations with consecutive instructions not in the same basic block). | ||
|  | */ | ||
|  | int luaK_getlabel (FuncState *fs) { | ||
|  |   fs->lasttarget = fs->pc; | ||
|  |   return fs->pc; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Returns the position of the instruction "controlling" a given | ||
|  | ** jump (that is, its condition), or the jump itself if it is | ||
|  | ** unconditional. | ||
|  | */ | ||
|  | static Instruction *getjumpcontrol (FuncState *fs, int pc) { | ||
|  |   Instruction *pi = &fs->f->code[pc]; | ||
|  |   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) | ||
|  |     return pi-1; | ||
|  |   else | ||
|  |     return pi; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Patch destination register for a TESTSET instruction. | ||
|  | ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). | ||
|  | ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination | ||
|  | ** register. Otherwise, change instruction to a simple 'TEST' (produces | ||
|  | ** no register value) | ||
|  | */ | ||
|  | static int patchtestreg (FuncState *fs, int node, int reg) { | ||
|  |   Instruction *i = getjumpcontrol(fs, node); | ||
|  |   if (GET_OPCODE(*i) != OP_TESTSET) | ||
|  |     return 0;  /* cannot patch other instructions */ | ||
|  |   if (reg != NO_REG && reg != GETARG_B(*i)) | ||
|  |     SETARG_A(*i, reg); | ||
|  |   else { | ||
|  |      /* no register to put value or register already has the value;
 | ||
|  |         change instruction to simple test */ | ||
|  |     *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i)); | ||
|  |   } | ||
|  |   return 1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Traverse a list of tests ensuring no one produces a value | ||
|  | */ | ||
|  | static void removevalues (FuncState *fs, int list) { | ||
|  |   for (; list != NO_JUMP; list = getjump(fs, list)) | ||
|  |       patchtestreg(fs, list, NO_REG); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Traverse a list of tests, patching their destination address and | ||
|  | ** registers: tests producing values jump to 'vtarget' (and put their | ||
|  | ** values in 'reg'), other tests jump to 'dtarget'. | ||
|  | */ | ||
|  | static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, | ||
|  |                           int dtarget) { | ||
|  |   while (list != NO_JUMP) { | ||
|  |     int next = getjump(fs, list); | ||
|  |     if (patchtestreg(fs, list, reg)) | ||
|  |       fixjump(fs, list, vtarget); | ||
|  |     else | ||
|  |       fixjump(fs, list, dtarget);  /* jump to default target */ | ||
|  |     list = next; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensure all pending jumps to current position are fixed (jumping | ||
|  | ** to current position with no values) and reset list of pending | ||
|  | ** jumps | ||
|  | */ | ||
|  | static void dischargejpc (FuncState *fs) { | ||
|  |   patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc); | ||
|  |   fs->jpc = NO_JUMP; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add elements in 'list' to list of pending jumps to "here" | ||
|  | ** (current position) | ||
|  | */ | ||
|  | void luaK_patchtohere (FuncState *fs, int list) { | ||
|  |   luaK_getlabel(fs);  /* mark "here" as a jump target */ | ||
|  |   luaK_concat(fs, &fs->jpc, list); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Path all jumps in 'list' to jump to 'target'. | ||
|  | ** (The assert means that we cannot fix a jump to a forward address | ||
|  | ** because we only know addresses once code is generated.) | ||
|  | */ | ||
|  | void luaK_patchlist (FuncState *fs, int list, int target) { | ||
|  |   if (target == fs->pc)  /* 'target' is current position? */ | ||
|  |     luaK_patchtohere(fs, list);  /* add list to pending jumps */ | ||
|  |   else { | ||
|  |     lua_assert(target < fs->pc); | ||
|  |     patchlistaux(fs, list, target, NO_REG, target); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Path all jumps in 'list' to close upvalues up to given 'level' | ||
|  | ** (The assertion checks that jumps either were closing nothing | ||
|  | ** or were closing higher levels, from inner blocks.) | ||
|  | */ | ||
|  | void luaK_patchclose (FuncState *fs, int list, int level) { | ||
|  |   level++;  /* argument is +1 to reserve 0 as non-op */ | ||
|  |   for (; list != NO_JUMP; list = getjump(fs, list)) { | ||
|  |     lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP && | ||
|  |                 (GETARG_A(fs->f->code[list]) == 0 || | ||
|  |                  GETARG_A(fs->f->code[list]) >= level)); | ||
|  |     SETARG_A(fs->f->code[list], level); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit instruction 'i', checking for array sizes and saving also its | ||
|  | ** line information. Return 'i' position. | ||
|  | */ | ||
|  | static int luaK_code (FuncState *fs, Instruction i) { | ||
|  |   Proto *f = fs->f; | ||
|  |   dischargejpc(fs);  /* 'pc' will change */ | ||
|  |   /* put new instruction in code array */ | ||
|  |   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, | ||
|  |                   MAX_INT, "opcodes"); | ||
|  |   f->code[fs->pc] = i; | ||
|  |   /* save corresponding line information */ | ||
|  |   luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int, | ||
|  |                   MAX_INT, "opcodes"); | ||
|  |   f->lineinfo[fs->pc] = fs->ls->lastline; | ||
|  |   return fs->pc++; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Format and emit an 'iABC' instruction. (Assertions check consistency | ||
|  | ** of parameters versus opcode.) | ||
|  | */ | ||
|  | int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) { | ||
|  |   lua_assert(getOpMode(o) == iABC); | ||
|  |   lua_assert(getBMode(o) != OpArgN || b == 0); | ||
|  |   lua_assert(getCMode(o) != OpArgN || c == 0); | ||
|  |   lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C); | ||
|  |   return luaK_code(fs, CREATE_ABC(o, a, b, c)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Format and emit an 'iABx' instruction. | ||
|  | */ | ||
|  | int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { | ||
|  |   lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx); | ||
|  |   lua_assert(getCMode(o) == OpArgN); | ||
|  |   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); | ||
|  |   return luaK_code(fs, CREATE_ABx(o, a, bc)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit an "extra argument" instruction (format 'iAx') | ||
|  | */ | ||
|  | static int codeextraarg (FuncState *fs, int a) { | ||
|  |   lua_assert(a <= MAXARG_Ax); | ||
|  |   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit a "load constant" instruction, using either 'OP_LOADK' | ||
|  | ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' | ||
|  | ** instruction with "extra argument". | ||
|  | */ | ||
|  | int luaK_codek (FuncState *fs, int reg, int k) { | ||
|  |   if (k <= MAXARG_Bx) | ||
|  |     return luaK_codeABx(fs, OP_LOADK, reg, k); | ||
|  |   else { | ||
|  |     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); | ||
|  |     codeextraarg(fs, k); | ||
|  |     return p; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Check register-stack level, keeping track of its maximum size | ||
|  | ** in field 'maxstacksize' | ||
|  | */ | ||
|  | void luaK_checkstack (FuncState *fs, int n) { | ||
|  |   int newstack = fs->freereg + n; | ||
|  |   if (newstack > fs->f->maxstacksize) { | ||
|  |     if (newstack >= MAXREGS) | ||
|  |       luaX_syntaxerror(fs->ls, | ||
|  |         "function or expression needs too many registers"); | ||
|  |     fs->f->maxstacksize = cast_byte(newstack); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Reserve 'n' registers in register stack | ||
|  | */ | ||
|  | void luaK_reserveregs (FuncState *fs, int n) { | ||
|  |   luaK_checkstack(fs, n); | ||
|  |   fs->freereg += n; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Free register 'reg', if it is neither a constant index nor | ||
|  | ** a local variable. | ||
|  | ) | ||
|  | */ | ||
|  | static void freereg (FuncState *fs, int reg) { | ||
|  |   if (!ISK(reg) && reg >= fs->nactvar) { | ||
|  |     fs->freereg--; | ||
|  |     lua_assert(reg == fs->freereg); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Free register used by expression 'e' (if any) | ||
|  | */ | ||
|  | static void freeexp (FuncState *fs, expdesc *e) { | ||
|  |   if (e->k == VNONRELOC) | ||
|  |     freereg(fs, e->u.info); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Free registers used by expressions 'e1' and 'e2' (if any) in proper | ||
|  | ** order. | ||
|  | */ | ||
|  | static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { | ||
|  |   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; | ||
|  |   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; | ||
|  |   if (r1 > r2) { | ||
|  |     freereg(fs, r1); | ||
|  |     freereg(fs, r2); | ||
|  |   } | ||
|  |   else { | ||
|  |     freereg(fs, r2); | ||
|  |     freereg(fs, r1); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add constant 'v' to prototype's list of constants (field 'k'). | ||
|  | ** Use scanner's table to cache position of constants in constant list | ||
|  | ** and try to reuse constants. Because some values should not be used | ||
|  | ** as keys (nil cannot be a key, integer keys can collapse with float | ||
|  | ** keys), the caller must provide a useful 'key' for indexing the cache. | ||
|  | */ | ||
|  | static int addk (FuncState *fs, TValue *key, TValue *v) { | ||
|  |   lua_State *L = fs->ls->L; | ||
|  |   Proto *f = fs->f; | ||
|  |   TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */ | ||
|  |   int k, oldsize; | ||
|  |   if (ttisinteger(idx)) {  /* is there an index there? */ | ||
|  |     k = cast_int(ivalue(idx)); | ||
|  |     /* correct value? (warning: must distinguish floats from integers!) */ | ||
|  |     if (k < fs->nk && ttype(&f->k[k]) == ttype(v) && | ||
|  |                       luaV_rawequalobj(&f->k[k], v)) | ||
|  |       return k;  /* reuse index */ | ||
|  |   } | ||
|  |   /* constant not found; create a new entry */ | ||
|  |   oldsize = f->sizek; | ||
|  |   k = fs->nk; | ||
|  |   /* numerical value does not need GC barrier;
 | ||
|  |      table has no metatable, so it does not need to invalidate cache */ | ||
|  |   setivalue(idx, k); | ||
|  |   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); | ||
|  |   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); | ||
|  |   setobj(L, &f->k[k], v); | ||
|  |   fs->nk++; | ||
|  |   luaC_barrier(L, f, v); | ||
|  |   return k; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add a string to list of constants and return its index. | ||
|  | */ | ||
|  | int luaK_stringK (FuncState *fs, TString *s) { | ||
|  |   TValue o; | ||
|  |   setsvalue(fs->ls->L, &o, s); | ||
|  |   return addk(fs, &o, &o);  /* use string itself as key */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add an integer to list of constants and return its index. | ||
|  | ** Integers use userdata as keys to avoid collision with floats with | ||
|  | ** same value; conversion to 'void*' is used only for hashing, so there | ||
|  | ** are no "precision" problems. | ||
|  | */ | ||
|  | int luaK_intK (FuncState *fs, lua_Integer n) { | ||
|  |   TValue k, o; | ||
|  |   setpvalue(&k, cast(void*, cast(size_t, n))); | ||
|  |   setivalue(&o, n); | ||
|  |   return addk(fs, &k, &o); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add a float to list of constants and return its index. | ||
|  | */ | ||
|  | static int luaK_numberK (FuncState *fs, lua_Number r) { | ||
|  |   TValue o; | ||
|  |   setfltvalue(&o, r); | ||
|  |   return addk(fs, &o, &o);  /* use number itself as key */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add a boolean to list of constants and return its index. | ||
|  | */ | ||
|  | static int boolK (FuncState *fs, int b) { | ||
|  |   TValue o; | ||
|  |   setbvalue(&o, b); | ||
|  |   return addk(fs, &o, &o);  /* use boolean itself as key */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Add nil to list of constants and return its index. | ||
|  | */ | ||
|  | static int nilK (FuncState *fs) { | ||
|  |   TValue k, v; | ||
|  |   setnilvalue(&v); | ||
|  |   /* cannot use nil as key; instead use table itself to represent nil */ | ||
|  |   sethvalue(fs->ls->L, &k, fs->ls->h); | ||
|  |   return addk(fs, &k, &v); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Fix an expression to return the number of results 'nresults'. | ||
|  | ** Either 'e' is a multi-ret expression (function call or vararg) | ||
|  | ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that). | ||
|  | */ | ||
|  | void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { | ||
|  |   if (e->k == VCALL) {  /* expression is an open function call? */ | ||
|  |     SETARG_C(getinstruction(fs, e), nresults + 1); | ||
|  |   } | ||
|  |   else if (e->k == VVARARG) { | ||
|  |     Instruction *pc = &getinstruction(fs, e); | ||
|  |     SETARG_B(*pc, nresults + 1); | ||
|  |     SETARG_A(*pc, fs->freereg); | ||
|  |     luaK_reserveregs(fs, 1); | ||
|  |   } | ||
|  |   else lua_assert(nresults == LUA_MULTRET); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Fix an expression to return one result. | ||
|  | ** If expression is not a multi-ret expression (function call or | ||
|  | ** vararg), it already returns one result, so nothing needs to be done. | ||
|  | ** Function calls become VNONRELOC expressions (as its result comes | ||
|  | ** fixed in the base register of the call), while vararg expressions | ||
|  | ** become VRELOCABLE (as OP_VARARG puts its results where it wants). | ||
|  | ** (Calls are created returning one result, so that does not need | ||
|  | ** to be fixed.) | ||
|  | */ | ||
|  | void luaK_setoneret (FuncState *fs, expdesc *e) { | ||
|  |   if (e->k == VCALL) {  /* expression is an open function call? */ | ||
|  |     /* already returns 1 value */ | ||
|  |     lua_assert(GETARG_C(getinstruction(fs, e)) == 2); | ||
|  |     e->k = VNONRELOC;  /* result has fixed position */ | ||
|  |     e->u.info = GETARG_A(getinstruction(fs, e)); | ||
|  |   } | ||
|  |   else if (e->k == VVARARG) { | ||
|  |     SETARG_B(getinstruction(fs, e), 2); | ||
|  |     e->k = VRELOCABLE;  /* can relocate its simple result */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensure that expression 'e' is not a variable. | ||
|  | */ | ||
|  | void luaK_dischargevars (FuncState *fs, expdesc *e) { | ||
|  |   switch (e->k) { | ||
|  |     case VLOCAL: {  /* already in a register */ | ||
|  |       e->k = VNONRELOC;  /* becomes a non-relocatable value */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case VUPVAL: {  /* move value to some (pending) register */ | ||
|  |       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); | ||
|  |       e->k = VRELOCABLE; | ||
|  |       break; | ||
|  |     } | ||
|  |     case VINDEXED: { | ||
|  |       OpCode op; | ||
|  |       freereg(fs, e->u.ind.idx); | ||
|  |       if (e->u.ind.vt == VLOCAL) {  /* is 't' in a register? */ | ||
|  |         freereg(fs, e->u.ind.t); | ||
|  |         op = OP_GETTABLE; | ||
|  |       } | ||
|  |       else { | ||
|  |         lua_assert(e->u.ind.vt == VUPVAL); | ||
|  |         op = OP_GETTABUP;  /* 't' is in an upvalue */ | ||
|  |       } | ||
|  |       e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx); | ||
|  |       e->k = VRELOCABLE; | ||
|  |       break; | ||
|  |     } | ||
|  |     case VVARARG: case VCALL: { | ||
|  |       luaK_setoneret(fs, e); | ||
|  |       break; | ||
|  |     } | ||
|  |     default: break;  /* there is one value available (somewhere) */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures expression value is in register 'reg' (and therefore | ||
|  | ** 'e' will become a non-relocatable expression). | ||
|  | */ | ||
|  | static void discharge2reg (FuncState *fs, expdesc *e, int reg) { | ||
|  |   luaK_dischargevars(fs, e); | ||
|  |   switch (e->k) { | ||
|  |     case VNIL: { | ||
|  |       luaK_nil(fs, reg, 1); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VFALSE: case VTRUE: { | ||
|  |       luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VK: { | ||
|  |       luaK_codek(fs, reg, e->u.info); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VKFLT: { | ||
|  |       luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval)); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VKINT: { | ||
|  |       luaK_codek(fs, reg, luaK_intK(fs, e->u.ival)); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VRELOCABLE: { | ||
|  |       Instruction *pc = &getinstruction(fs, e); | ||
|  |       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case VNONRELOC: { | ||
|  |       if (reg != e->u.info) | ||
|  |         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); | ||
|  |       break; | ||
|  |     } | ||
|  |     default: { | ||
|  |       lua_assert(e->k == VJMP); | ||
|  |       return;  /* nothing to do... */ | ||
|  |     } | ||
|  |   } | ||
|  |   e->u.info = reg; | ||
|  |   e->k = VNONRELOC; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures expression value is in any register. | ||
|  | */ | ||
|  | static void discharge2anyreg (FuncState *fs, expdesc *e) { | ||
|  |   if (e->k != VNONRELOC) {  /* no fixed register yet? */ | ||
|  |     luaK_reserveregs(fs, 1);  /* get a register */ | ||
|  |     discharge2reg(fs, e, fs->freereg-1);  /* put value there */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int code_loadbool (FuncState *fs, int A, int b, int jump) { | ||
|  |   luaK_getlabel(fs);  /* those instructions may be jump targets */ | ||
|  |   return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** check whether list has any jump that do not produce a value | ||
|  | ** or produce an inverted value | ||
|  | */ | ||
|  | static int need_value (FuncState *fs, int list) { | ||
|  |   for (; list != NO_JUMP; list = getjump(fs, list)) { | ||
|  |     Instruction i = *getjumpcontrol(fs, list); | ||
|  |     if (GET_OPCODE(i) != OP_TESTSET) return 1; | ||
|  |   } | ||
|  |   return 0;  /* not found */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures final expression result (including results from its jump | ||
|  | ** lists) is in register 'reg'. | ||
|  | ** If expression has jumps, need to patch these jumps either to | ||
|  | ** its final position or to "load" instructions (for those tests | ||
|  | ** that do not produce values). | ||
|  | */ | ||
|  | static void exp2reg (FuncState *fs, expdesc *e, int reg) { | ||
|  |   discharge2reg(fs, e, reg); | ||
|  |   if (e->k == VJMP)  /* expression itself is a test? */ | ||
|  |     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */ | ||
|  |   if (hasjumps(e)) { | ||
|  |     int final;  /* position after whole expression */ | ||
|  |     int p_f = NO_JUMP;  /* position of an eventual LOAD false */ | ||
|  |     int p_t = NO_JUMP;  /* position of an eventual LOAD true */ | ||
|  |     if (need_value(fs, e->t) || need_value(fs, e->f)) { | ||
|  |       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); | ||
|  |       p_f = code_loadbool(fs, reg, 0, 1); | ||
|  |       p_t = code_loadbool(fs, reg, 1, 0); | ||
|  |       luaK_patchtohere(fs, fj); | ||
|  |     } | ||
|  |     final = luaK_getlabel(fs); | ||
|  |     patchlistaux(fs, e->f, final, reg, p_f); | ||
|  |     patchlistaux(fs, e->t, final, reg, p_t); | ||
|  |   } | ||
|  |   e->f = e->t = NO_JUMP; | ||
|  |   e->u.info = reg; | ||
|  |   e->k = VNONRELOC; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures final expression result (including results from its jump | ||
|  | ** lists) is in next available register. | ||
|  | */ | ||
|  | void luaK_exp2nextreg (FuncState *fs, expdesc *e) { | ||
|  |   luaK_dischargevars(fs, e); | ||
|  |   freeexp(fs, e); | ||
|  |   luaK_reserveregs(fs, 1); | ||
|  |   exp2reg(fs, e, fs->freereg - 1); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures final expression result (including results from its jump | ||
|  | ** lists) is in some (any) register and return that register. | ||
|  | */ | ||
|  | int luaK_exp2anyreg (FuncState *fs, expdesc *e) { | ||
|  |   luaK_dischargevars(fs, e); | ||
|  |   if (e->k == VNONRELOC) {  /* expression already has a register? */ | ||
|  |     if (!hasjumps(e))  /* no jumps? */ | ||
|  |       return e->u.info;  /* result is already in a register */ | ||
|  |     if (e->u.info >= fs->nactvar) {  /* reg. is not a local? */ | ||
|  |       exp2reg(fs, e, e->u.info);  /* put final result in it */ | ||
|  |       return e->u.info; | ||
|  |     } | ||
|  |   } | ||
|  |   luaK_exp2nextreg(fs, e);  /* otherwise, use next available register */ | ||
|  |   return e->u.info; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures final expression result is either in a register or in an | ||
|  | ** upvalue. | ||
|  | */ | ||
|  | void luaK_exp2anyregup (FuncState *fs, expdesc *e) { | ||
|  |   if (e->k != VUPVAL || hasjumps(e)) | ||
|  |     luaK_exp2anyreg(fs, e); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures final expression result is either in a register or it is | ||
|  | ** a constant. | ||
|  | */ | ||
|  | void luaK_exp2val (FuncState *fs, expdesc *e) { | ||
|  |   if (hasjumps(e)) | ||
|  |     luaK_exp2anyreg(fs, e); | ||
|  |   else | ||
|  |     luaK_dischargevars(fs, e); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Ensures final expression result is in a valid R/K index | ||
|  | ** (that is, it is either in a register or in 'k' with an index | ||
|  | ** in the range of R/K indices). | ||
|  | ** Returns R/K index. | ||
|  | */ | ||
|  | int luaK_exp2RK (FuncState *fs, expdesc *e) { | ||
|  |   luaK_exp2val(fs, e); | ||
|  |   switch (e->k) {  /* move constants to 'k' */ | ||
|  |     case VTRUE: e->u.info = boolK(fs, 1); goto vk; | ||
|  |     case VFALSE: e->u.info = boolK(fs, 0); goto vk; | ||
|  |     case VNIL: e->u.info = nilK(fs); goto vk; | ||
|  |     case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk; | ||
|  |     case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk; | ||
|  |     case VK: | ||
|  |      vk: | ||
|  |       e->k = VK; | ||
|  |       if (e->u.info <= MAXINDEXRK)  /* constant fits in 'argC'? */ | ||
|  |         return RKASK(e->u.info); | ||
|  |       else break; | ||
|  |     default: break; | ||
|  |   } | ||
|  |   /* not a constant in the right range: put it in a register */ | ||
|  |   return luaK_exp2anyreg(fs, e); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Generate code to store result of expression 'ex' into variable 'var'. | ||
|  | */ | ||
|  | void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { | ||
|  |   switch (var->k) { | ||
|  |     case VLOCAL: { | ||
|  |       freeexp(fs, ex); | ||
|  |       exp2reg(fs, ex, var->u.info);  /* compute 'ex' into proper place */ | ||
|  |       return; | ||
|  |     } | ||
|  |     case VUPVAL: { | ||
|  |       int e = luaK_exp2anyreg(fs, ex); | ||
|  |       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VINDEXED: { | ||
|  |       OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP; | ||
|  |       int e = luaK_exp2RK(fs, ex); | ||
|  |       luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e); | ||
|  |       break; | ||
|  |     } | ||
|  |     default: lua_assert(0);  /* invalid var kind to store */ | ||
|  |   } | ||
|  |   freeexp(fs, ex); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). | ||
|  | */ | ||
|  | void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { | ||
|  |   int ereg; | ||
|  |   luaK_exp2anyreg(fs, e); | ||
|  |   ereg = e->u.info;  /* register where 'e' was placed */ | ||
|  |   freeexp(fs, e); | ||
|  |   e->u.info = fs->freereg;  /* base register for op_self */ | ||
|  |   e->k = VNONRELOC;  /* self expression has a fixed register */ | ||
|  |   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */ | ||
|  |   luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key)); | ||
|  |   freeexp(fs, key); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Negate condition 'e' (where 'e' is a comparison). | ||
|  | */ | ||
|  | static void negatecondition (FuncState *fs, expdesc *e) { | ||
|  |   Instruction *pc = getjumpcontrol(fs, e->u.info); | ||
|  |   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && | ||
|  |                                            GET_OPCODE(*pc) != OP_TEST); | ||
|  |   SETARG_A(*pc, !(GETARG_A(*pc))); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' | ||
|  | ** is true, code will jump if 'e' is true.) Return jump position. | ||
|  | ** Optimize when 'e' is 'not' something, inverting the condition | ||
|  | ** and removing the 'not'. | ||
|  | */ | ||
|  | static int jumponcond (FuncState *fs, expdesc *e, int cond) { | ||
|  |   if (e->k == VRELOCABLE) { | ||
|  |     Instruction ie = getinstruction(fs, e); | ||
|  |     if (GET_OPCODE(ie) == OP_NOT) { | ||
|  |       fs->pc--;  /* remove previous OP_NOT */ | ||
|  |       return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond); | ||
|  |     } | ||
|  |     /* else go through */ | ||
|  |   } | ||
|  |   discharge2anyreg(fs, e); | ||
|  |   freeexp(fs, e); | ||
|  |   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit code to go through if 'e' is true, jump otherwise. | ||
|  | */ | ||
|  | void luaK_goiftrue (FuncState *fs, expdesc *e) { | ||
|  |   int pc;  /* pc of new jump */ | ||
|  |   luaK_dischargevars(fs, e); | ||
|  |   switch (e->k) { | ||
|  |     case VJMP: {  /* condition? */ | ||
|  |       negatecondition(fs, e);  /* jump when it is false */ | ||
|  |       pc = e->u.info;  /* save jump position */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case VK: case VKFLT: case VKINT: case VTRUE: { | ||
|  |       pc = NO_JUMP;  /* always true; do nothing */ | ||
|  |       break; | ||
|  |     } | ||
|  |     default: { | ||
|  |       pc = jumponcond(fs, e, 0);  /* jump when false */ | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  |   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */ | ||
|  |   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */ | ||
|  |   e->t = NO_JUMP; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit code to go through if 'e' is false, jump otherwise. | ||
|  | */ | ||
|  | void luaK_goiffalse (FuncState *fs, expdesc *e) { | ||
|  |   int pc;  /* pc of new jump */ | ||
|  |   luaK_dischargevars(fs, e); | ||
|  |   switch (e->k) { | ||
|  |     case VJMP: { | ||
|  |       pc = e->u.info;  /* already jump if true */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case VNIL: case VFALSE: { | ||
|  |       pc = NO_JUMP;  /* always false; do nothing */ | ||
|  |       break; | ||
|  |     } | ||
|  |     default: { | ||
|  |       pc = jumponcond(fs, e, 1);  /* jump if true */ | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  |   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */ | ||
|  |   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */ | ||
|  |   e->f = NO_JUMP; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Code 'not e', doing constant folding. | ||
|  | */ | ||
|  | static void codenot (FuncState *fs, expdesc *e) { | ||
|  |   luaK_dischargevars(fs, e); | ||
|  |   switch (e->k) { | ||
|  |     case VNIL: case VFALSE: { | ||
|  |       e->k = VTRUE;  /* true == not nil == not false */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case VK: case VKFLT: case VKINT: case VTRUE: { | ||
|  |       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case VJMP: { | ||
|  |       negatecondition(fs, e); | ||
|  |       break; | ||
|  |     } | ||
|  |     case VRELOCABLE: | ||
|  |     case VNONRELOC: { | ||
|  |       discharge2anyreg(fs, e); | ||
|  |       freeexp(fs, e); | ||
|  |       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); | ||
|  |       e->k = VRELOCABLE; | ||
|  |       break; | ||
|  |     } | ||
|  |     default: lua_assert(0);  /* cannot happen */ | ||
|  |   } | ||
|  |   /* interchange true and false lists */ | ||
|  |   { int temp = e->f; e->f = e->t; e->t = temp; } | ||
|  |   removevalues(fs, e->f);  /* values are useless when negated */ | ||
|  |   removevalues(fs, e->t); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Create expression 't[k]'. 't' must have its final result already in a | ||
|  | ** register or upvalue. | ||
|  | */ | ||
|  | void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { | ||
|  |   lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL)); | ||
|  |   t->u.ind.t = t->u.info;  /* register or upvalue index */ | ||
|  |   t->u.ind.idx = luaK_exp2RK(fs, k);  /* R/K index for key */ | ||
|  |   t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL; | ||
|  |   t->k = VINDEXED; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Return false if folding can raise an error. | ||
|  | ** Bitwise operations need operands convertible to integers; division | ||
|  | ** operations cannot have 0 as divisor. | ||
|  | */ | ||
|  | static int validop (int op, TValue *v1, TValue *v2) { | ||
|  |   switch (op) { | ||
|  |     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: | ||
|  |     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */ | ||
|  |       lua_Integer i; | ||
|  |       return (tointeger(v1, &i) && tointeger(v2, &i)); | ||
|  |     } | ||
|  |     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */ | ||
|  |       return (nvalue(v2) != 0); | ||
|  |     default: return 1;  /* everything else is valid */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Try to "constant-fold" an operation; return 1 iff successful. | ||
|  | ** (In this case, 'e1' has the final result.) | ||
|  | */ | ||
|  | static int constfolding (FuncState *fs, int op, expdesc *e1, | ||
|  |                                                 const expdesc *e2) { | ||
|  |   TValue v1, v2, res; | ||
|  |   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) | ||
|  |     return 0;  /* non-numeric operands or not safe to fold */ | ||
|  |   luaO_arith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */ | ||
|  |   if (ttisinteger(&res)) { | ||
|  |     e1->k = VKINT; | ||
|  |     e1->u.ival = ivalue(&res); | ||
|  |   } | ||
|  |   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ | ||
|  |     lua_Number n = fltvalue(&res); | ||
|  |     if (luai_numisnan(n) || n == 0) | ||
|  |       return 0; | ||
|  |     e1->k = VKFLT; | ||
|  |     e1->u.nval = n; | ||
|  |   } | ||
|  |   return 1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit code for unary expressions that "produce values" | ||
|  | ** (everything but 'not'). | ||
|  | ** Expression to produce final result will be encoded in 'e'. | ||
|  | */ | ||
|  | static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { | ||
|  |   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */ | ||
|  |   freeexp(fs, e); | ||
|  |   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */ | ||
|  |   e->k = VRELOCABLE;  /* all those operations are relocatable */ | ||
|  |   luaK_fixline(fs, line); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit code for binary expressions that "produce values" | ||
|  | ** (everything but logical operators 'and'/'or' and comparison | ||
|  | ** operators). | ||
|  | ** Expression to produce final result will be encoded in 'e1'. | ||
|  | ** Because 'luaK_exp2RK' can free registers, its calls must be | ||
|  | ** in "stack order" (that is, first on 'e2', which may have more | ||
|  | ** recent registers to be released). | ||
|  | */ | ||
|  | static void codebinexpval (FuncState *fs, OpCode op, | ||
|  |                            expdesc *e1, expdesc *e2, int line) { | ||
|  |   int rk2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */ | ||
|  |   int rk1 = luaK_exp2RK(fs, e1); | ||
|  |   freeexps(fs, e1, e2); | ||
|  |   e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2);  /* generate opcode */ | ||
|  |   e1->k = VRELOCABLE;  /* all those operations are relocatable */ | ||
|  |   luaK_fixline(fs, line); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit code for comparisons. | ||
|  | ** 'e1' was already put in R/K form by 'luaK_infix'. | ||
|  | */ | ||
|  | static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { | ||
|  |   int rk1 = (e1->k == VK) ? RKASK(e1->u.info) | ||
|  |                           : check_exp(e1->k == VNONRELOC, e1->u.info); | ||
|  |   int rk2 = luaK_exp2RK(fs, e2); | ||
|  |   freeexps(fs, e1, e2); | ||
|  |   switch (opr) { | ||
|  |     case OPR_NE: {  /* '(a ~= b)' ==> 'not (a == b)' */ | ||
|  |       e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2); | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_GT: case OPR_GE: { | ||
|  |       /* '(a > b)' ==> '(b < a)';  '(a >= b)' ==> '(b <= a)' */ | ||
|  |       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); | ||
|  |       e1->u.info = condjump(fs, op, 1, rk2, rk1);  /* invert operands */ | ||
|  |       break; | ||
|  |     } | ||
|  |     default: {  /* '==', '<', '<=' use their own opcodes */ | ||
|  |       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); | ||
|  |       e1->u.info = condjump(fs, op, 1, rk1, rk2); | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  |   e1->k = VJMP; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Aplly prefix operation 'op' to expression 'e'. | ||
|  | */ | ||
|  | void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { | ||
|  |   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; | ||
|  |   switch (op) { | ||
|  |     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */ | ||
|  |       if (constfolding(fs, op + LUA_OPUNM, e, &ef)) | ||
|  |         break; | ||
|  |       /* FALLTHROUGH */ | ||
|  |     case OPR_LEN: | ||
|  |       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); | ||
|  |       break; | ||
|  |     case OPR_NOT: codenot(fs, e); break; | ||
|  |     default: lua_assert(0); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Process 1st operand 'v' of binary operation 'op' before reading | ||
|  | ** 2nd operand. | ||
|  | */ | ||
|  | void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { | ||
|  |   switch (op) { | ||
|  |     case OPR_AND: { | ||
|  |       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_OR: { | ||
|  |       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_CONCAT: { | ||
|  |       luaK_exp2nextreg(fs, v);  /* operand must be on the 'stack' */ | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_ADD: case OPR_SUB: | ||
|  |     case OPR_MUL: case OPR_DIV: case OPR_IDIV: | ||
|  |     case OPR_MOD: case OPR_POW: | ||
|  |     case OPR_BAND: case OPR_BOR: case OPR_BXOR: | ||
|  |     case OPR_SHL: case OPR_SHR: { | ||
|  |       if (!tonumeral(v, NULL)) | ||
|  |         luaK_exp2RK(fs, v); | ||
|  |       /* else keep numeral, which may be folded with 2nd operand */ | ||
|  |       break; | ||
|  |     } | ||
|  |     default: { | ||
|  |       luaK_exp2RK(fs, v); | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Finalize code for binary operation, after reading 2nd operand. | ||
|  | ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because | ||
|  | ** concatenation is right associative), merge second CONCAT into first | ||
|  | ** one. | ||
|  | */ | ||
|  | void luaK_posfix (FuncState *fs, BinOpr op, | ||
|  |                   expdesc *e1, expdesc *e2, int line) { | ||
|  |   switch (op) { | ||
|  |     case OPR_AND: { | ||
|  |       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luK_infix' */ | ||
|  |       luaK_dischargevars(fs, e2); | ||
|  |       luaK_concat(fs, &e2->f, e1->f); | ||
|  |       *e1 = *e2; | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_OR: { | ||
|  |       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luK_infix' */ | ||
|  |       luaK_dischargevars(fs, e2); | ||
|  |       luaK_concat(fs, &e2->t, e1->t); | ||
|  |       *e1 = *e2; | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_CONCAT: { | ||
|  |       luaK_exp2val(fs, e2); | ||
|  |       if (e2->k == VRELOCABLE && | ||
|  |           GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) { | ||
|  |         lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1); | ||
|  |         freeexp(fs, e1); | ||
|  |         SETARG_B(getinstruction(fs, e2), e1->u.info); | ||
|  |         e1->k = VRELOCABLE; e1->u.info = e2->u.info; | ||
|  |       } | ||
|  |       else { | ||
|  |         luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */ | ||
|  |         codebinexpval(fs, OP_CONCAT, e1, e2, line); | ||
|  |       } | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV: | ||
|  |     case OPR_IDIV: case OPR_MOD: case OPR_POW: | ||
|  |     case OPR_BAND: case OPR_BOR: case OPR_BXOR: | ||
|  |     case OPR_SHL: case OPR_SHR: { | ||
|  |       if (!constfolding(fs, op + LUA_OPADD, e1, e2)) | ||
|  |         codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line); | ||
|  |       break; | ||
|  |     } | ||
|  |     case OPR_EQ: case OPR_LT: case OPR_LE: | ||
|  |     case OPR_NE: case OPR_GT: case OPR_GE: { | ||
|  |       codecomp(fs, op, e1, e2); | ||
|  |       break; | ||
|  |     } | ||
|  |     default: lua_assert(0); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Change line information associated with current position. | ||
|  | */ | ||
|  | void luaK_fixline (FuncState *fs, int line) { | ||
|  |   fs->f->lineinfo[fs->pc - 1] = line; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Emit a SETLIST instruction. | ||
|  | ** 'base' is register that keeps table; | ||
|  | ** 'nelems' is #table plus those to be stored now; | ||
|  | ** 'tostore' is number of values (in registers 'base + 1',...) to add to | ||
|  | ** table (or LUA_MULTRET to add up to stack top). | ||
|  | */ | ||
|  | void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { | ||
|  |   int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1; | ||
|  |   int b = (tostore == LUA_MULTRET) ? 0 : tostore; | ||
|  |   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); | ||
|  |   if (c <= MAXARG_C) | ||
|  |     luaK_codeABC(fs, OP_SETLIST, base, b, c); | ||
|  |   else if (c <= MAXARG_Ax) { | ||
|  |     luaK_codeABC(fs, OP_SETLIST, base, b, 0); | ||
|  |     codeextraarg(fs, c); | ||
|  |   } | ||
|  |   else | ||
|  |     luaX_syntaxerror(fs->ls, "constructor too long"); | ||
|  |   fs->freereg = base + 1;  /* free registers with list values */ | ||
|  | } | ||
|  | 
 | ||
|  | } // end NS_SLUA
 |