670 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			670 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  | ** $Id: ltable.c,v 2.118 2016/11/07 12:38:35 roberto Exp $ | ||
|  | ** Lua tables (hash) | ||
|  | ** See Copyright Notice in lua.h | ||
|  | */ | ||
|  | 
 | ||
|  | #define ltable_c
 | ||
|  | #define LUA_CORE
 | ||
|  | 
 | ||
|  | #include "ltable.h"
 | ||
|  | #include "lprefix.h"
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Implementation of tables (aka arrays, objects, or hash tables). | ||
|  | ** Tables keep its elements in two parts: an array part and a hash part. | ||
|  | ** Non-negative integer keys are all candidates to be kept in the array | ||
|  | ** part. The actual size of the array is the largest 'n' such that | ||
|  | ** more than half the slots between 1 and n are in use. | ||
|  | ** Hash uses a mix of chained scatter table with Brent's variation. | ||
|  | ** A main invariant of these tables is that, if an element is not | ||
|  | ** in its main position (i.e. the 'original' position that its hash gives | ||
|  | ** to it), then the colliding element is in its own main position. | ||
|  | ** Hence even when the load factor reaches 100%, performance remains good. | ||
|  | */ | ||
|  | 
 | ||
|  | #include <math.h>
 | ||
|  | #include <limits.h>
 | ||
|  | 
 | ||
|  | #include "lua.h"
 | ||
|  | #include "ldebug.h"
 | ||
|  | #include "ldo.h"
 | ||
|  | #include "lgc.h"
 | ||
|  | #include "lmem.h"
 | ||
|  | #include "lobject.h"
 | ||
|  | #include "lstate.h"
 | ||
|  | #include "lstring.h"
 | ||
|  | #include "lvm.h"
 | ||
|  | 
 | ||
|  | namespace NS_SLUA { | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is | ||
|  | ** the largest integer such that MAXASIZE fits in an unsigned int. | ||
|  | */ | ||
|  | #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
 | ||
|  | #define MAXASIZE	(1u << MAXABITS)
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest | ||
|  | ** integer such that 2^MAXHBITS fits in a signed int. (Note that the | ||
|  | ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still | ||
|  | ** fits comfortably in an unsigned int.) | ||
|  | */ | ||
|  | #define MAXHBITS	(MAXABITS - 1)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
 | ||
|  | 
 | ||
|  | #define hashstr(t,str)		hashpow2(t, (str)->hash)
 | ||
|  | #define hashboolean(t,p)	hashpow2(t, p)
 | ||
|  | #define hashint(t,i)		hashpow2(t, i)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** for some types, it is better to avoid modulus by power of 2, as | ||
|  | ** they tend to have many 2 factors. | ||
|  | */ | ||
|  | #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define hashpointer(t,p)	hashmod(t, point2uint(p))
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define dummynode		(&dummynode_)
 | ||
|  | 
 | ||
|  | static const Node dummynode_ = { | ||
|  |   {NILCONSTANT},  /* value */ | ||
|  |   {{NILCONSTANT, 0}}  /* key */ | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Hash for floating-point numbers. | ||
|  | ** The main computation should be just | ||
|  | **     n = frexp(n, &i); return (n * INT_MAX) + i | ||
|  | ** but there are some numerical subtleties. | ||
|  | ** In a two-complement representation, INT_MAX does not has an exact | ||
|  | ** representation as a float, but INT_MIN does; because the absolute | ||
|  | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the | ||
|  | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal | ||
|  | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when | ||
|  | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with | ||
|  | ** INT_MIN. | ||
|  | */ | ||
|  | #if !defined(l_hashfloat)
 | ||
|  | static int l_hashfloat (lua_Number n) { | ||
|  |   int i; | ||
|  |   lua_Integer ni; | ||
|  |   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); | ||
|  |   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */ | ||
|  |     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); | ||
|  |     return 0; | ||
|  |   } | ||
|  |   else {  /* normal case */ | ||
|  |     unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni); | ||
|  |     return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u); | ||
|  |   } | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** returns the 'main' position of an element in a table (that is, the index | ||
|  | ** of its hash value) | ||
|  | */ | ||
|  | static Node *mainposition (const Table *t, const TValue *key) { | ||
|  |   switch (ttype(key)) { | ||
|  |     case LUA_TNUMINT: | ||
|  |       return hashint(t, ivalue(key)); | ||
|  |     case LUA_TNUMFLT: | ||
|  |       return hashmod(t, l_hashfloat(fltvalue(key))); | ||
|  |     case LUA_TSHRSTR: | ||
|  |       return hashstr(t, tsvalue(key)); | ||
|  |     case LUA_TLNGSTR: | ||
|  |       return hashpow2(t, luaS_hashlongstr(tsvalue(key))); | ||
|  |     case LUA_TBOOLEAN: | ||
|  |       return hashboolean(t, bvalue(key)); | ||
|  |     case LUA_TLIGHTUSERDATA: | ||
|  |       return hashpointer(t, pvalue(key)); | ||
|  |     case LUA_TLCF: | ||
|  |       return hashpointer(t, fvalue(key)); | ||
|  |     default: | ||
|  |       lua_assert(!ttisdeadkey(key)); | ||
|  |       return hashpointer(t, gcvalue(key)); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** returns the index for 'key' if 'key' is an appropriate key to live in | ||
|  | ** the array part of the table, 0 otherwise. | ||
|  | */ | ||
|  | static unsigned int arrayindex (const TValue *key) { | ||
|  |   if (ttisinteger(key)) { | ||
|  |     lua_Integer k = ivalue(key); | ||
|  |     if (0 < k && (lua_Unsigned)k <= MAXASIZE) | ||
|  |       return cast(unsigned int, k);  /* 'key' is an appropriate array index */ | ||
|  |   } | ||
|  |   return 0;  /* 'key' did not match some condition */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** returns the index of a 'key' for table traversals. First goes all | ||
|  | ** elements in the array part, then elements in the hash part. The | ||
|  | ** beginning of a traversal is signaled by 0. | ||
|  | */ | ||
|  | static unsigned int findindex (lua_State *L, Table *t, StkId key) { | ||
|  |   unsigned int i; | ||
|  |   if (ttisnil(key)) return 0;  /* first iteration */ | ||
|  |   i = arrayindex(key); | ||
|  |   if (i != 0 && i <= t->sizearray)  /* is 'key' inside array part? */ | ||
|  |     return i;  /* yes; that's the index */ | ||
|  |   else { | ||
|  |     int nx; | ||
|  |     Node *n = mainposition(t, key); | ||
|  |     for (;;) {  /* check whether 'key' is somewhere in the chain */ | ||
|  |       /* key may be dead already, but it is ok to use it in 'next' */ | ||
|  |       if (luaV_rawequalobj(gkey(n), key) || | ||
|  |             (ttisdeadkey(gkey(n)) && iscollectable(key) && | ||
|  |              deadvalue(gkey(n)) == gcvalue(key))) { | ||
|  |         i = cast_int(n - gnode(t, 0));  /* key index in hash table */ | ||
|  |         /* hash elements are numbered after array ones */ | ||
|  |         return (i + 1) + t->sizearray; | ||
|  |       } | ||
|  |       nx = gnext(n); | ||
|  |       if (nx == 0) | ||
|  |         luaG_runerror(L, "invalid key to 'next'");  /* key not found */ | ||
|  |       else n += nx; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | int luaH_next (lua_State *L, Table *t, StkId key) { | ||
|  |   unsigned int i = findindex(L, t, key);  /* find original element */ | ||
|  |   for (; i < t->sizearray; i++) {  /* try first array part */ | ||
|  |     if (!ttisnil(&t->array[i])) {  /* a non-nil value? */ | ||
|  |       setivalue(key, i + 1); | ||
|  |       setobj2s(L, key+1, &t->array[i]); | ||
|  |       return 1; | ||
|  |     } | ||
|  |   } | ||
|  |   for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) {  /* hash part */ | ||
|  |     if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */ | ||
|  |       setobj2s(L, key, gkey(gnode(t, i))); | ||
|  |       setobj2s(L, key+1, gval(gnode(t, i))); | ||
|  |       return 1; | ||
|  |     } | ||
|  |   } | ||
|  |   return 0;  /* no more elements */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** {============================================================= | ||
|  | ** Rehash | ||
|  | ** ============================================================== | ||
|  | */ | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Compute the optimal size for the array part of table 't'. 'nums' is a | ||
|  | ** "count array" where 'nums[i]' is the number of integers in the table | ||
|  | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of | ||
|  | ** integer keys in the table and leaves with the number of keys that | ||
|  | ** will go to the array part; return the optimal size. | ||
|  | */ | ||
|  | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { | ||
|  |   int i; | ||
|  |   unsigned int twotoi;  /* 2^i (candidate for optimal size) */ | ||
|  |   unsigned int a = 0;  /* number of elements smaller than 2^i */ | ||
|  |   unsigned int na = 0;  /* number of elements to go to array part */ | ||
|  |   unsigned int optimal = 0;  /* optimal size for array part */ | ||
|  |   /* loop while keys can fill more than half of total size */ | ||
|  |   for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) { | ||
|  |     if (nums[i] > 0) { | ||
|  |       a += nums[i]; | ||
|  |       if (a > twotoi/2) {  /* more than half elements present? */ | ||
|  |         optimal = twotoi;  /* optimal size (till now) */ | ||
|  |         na = a;  /* all elements up to 'optimal' will go to array part */ | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); | ||
|  |   *pna = na; | ||
|  |   return optimal; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int countint (const TValue *key, unsigned int *nums) { | ||
|  |   unsigned int k = arrayindex(key); | ||
|  |   if (k != 0) {  /* is 'key' an appropriate array index? */ | ||
|  |     nums[luaO_ceillog2(k)]++;  /* count as such */ | ||
|  |     return 1; | ||
|  |   } | ||
|  |   else | ||
|  |     return 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Count keys in array part of table 't': Fill 'nums[i]' with | ||
|  | ** number of keys that will go into corresponding slice and return | ||
|  | ** total number of non-nil keys. | ||
|  | */ | ||
|  | static unsigned int numusearray (const Table *t, unsigned int *nums) { | ||
|  |   int lg; | ||
|  |   unsigned int ttlg;  /* 2^lg */ | ||
|  |   unsigned int ause = 0;  /* summation of 'nums' */ | ||
|  |   unsigned int i = 1;  /* count to traverse all array keys */ | ||
|  |   /* traverse each slice */ | ||
|  |   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { | ||
|  |     unsigned int lc = 0;  /* counter */ | ||
|  |     unsigned int lim = ttlg; | ||
|  |     if (lim > t->sizearray) { | ||
|  |       lim = t->sizearray;  /* adjust upper limit */ | ||
|  |       if (i > lim) | ||
|  |         break;  /* no more elements to count */ | ||
|  |     } | ||
|  |     /* count elements in range (2^(lg - 1), 2^lg] */ | ||
|  |     for (; i <= lim; i++) { | ||
|  |       if (!ttisnil(&t->array[i-1])) | ||
|  |         lc++; | ||
|  |     } | ||
|  |     nums[lg] += lc; | ||
|  |     ause += lc; | ||
|  |   } | ||
|  |   return ause; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { | ||
|  |   int totaluse = 0;  /* total number of elements */ | ||
|  |   int ause = 0;  /* elements added to 'nums' (can go to array part) */ | ||
|  |   int i = sizenode(t); | ||
|  |   while (i--) { | ||
|  |     Node *n = &t->node[i]; | ||
|  |     if (!ttisnil(gval(n))) { | ||
|  |       ause += countint(gkey(n), nums); | ||
|  |       totaluse++; | ||
|  |     } | ||
|  |   } | ||
|  |   *pna += ause; | ||
|  |   return totaluse; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void setarrayvector (lua_State *L, Table *t, unsigned int size) { | ||
|  |   unsigned int i; | ||
|  |   luaM_reallocvector(L, t->array, t->sizearray, size, TValue); | ||
|  |   for (i=t->sizearray; i<size; i++) | ||
|  |      setnilvalue(&t->array[i]); | ||
|  |   t->sizearray = size; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void setnodevector (lua_State *L, Table *t, unsigned int size) { | ||
|  |   if (size == 0) {  /* no elements to hash part? */ | ||
|  |     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */ | ||
|  |     t->lsizenode = 0; | ||
|  |     t->lastfree = NULL;  /* signal that it is using dummy node */ | ||
|  |   } | ||
|  |   else { | ||
|  |     int i; | ||
|  |     int lsize = luaO_ceillog2(size); | ||
|  |     if (lsize > MAXHBITS) | ||
|  |       luaG_runerror(L, "table overflow"); | ||
|  |     size = twoto(lsize); | ||
|  |     t->node = luaM_newvector(L, size, Node); | ||
|  |     for (i = 0; i < (int)size; i++) { | ||
|  |       Node *n = gnode(t, i); | ||
|  |       gnext(n) = 0; | ||
|  |       setnilvalue(wgkey(n)); | ||
|  |       setnilvalue(gval(n)); | ||
|  |     } | ||
|  |     t->lsizenode = cast_byte(lsize); | ||
|  |     t->lastfree = gnode(t, size);  /* all positions are free */ | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void luaH_resize (lua_State *L, Table *t, unsigned int nasize, | ||
|  |                                           unsigned int nhsize) { | ||
|  |   unsigned int i; | ||
|  |   int j; | ||
|  |   unsigned int oldasize = t->sizearray; | ||
|  |   int oldhsize = allocsizenode(t); | ||
|  |   Node *nold = t->node;  /* save old hash ... */ | ||
|  |   if (nasize > oldasize)  /* array part must grow? */ | ||
|  |     setarrayvector(L, t, nasize); | ||
|  |   /* create new hash part with appropriate size */ | ||
|  |   setnodevector(L, t, nhsize); | ||
|  |   if (nasize < oldasize) {  /* array part must shrink? */ | ||
|  |     t->sizearray = nasize; | ||
|  |     /* re-insert elements from vanishing slice */ | ||
|  |     for (i=nasize; i<oldasize; i++) { | ||
|  |       if (!ttisnil(&t->array[i])) | ||
|  |         luaH_setint(L, t, i + 1, &t->array[i]); | ||
|  |     } | ||
|  |     /* shrink array */ | ||
|  |     luaM_reallocvector(L, t->array, oldasize, nasize, TValue); | ||
|  |   } | ||
|  |   /* re-insert elements from hash part */ | ||
|  |   for (j = oldhsize - 1; j >= 0; j--) { | ||
|  |     Node *old = nold + j; | ||
|  |     if (!ttisnil(gval(old))) { | ||
|  |       /* doesn't need barrier/invalidate cache, as entry was
 | ||
|  |          already present in the table */ | ||
|  |       setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); | ||
|  |     } | ||
|  |   } | ||
|  |   if (oldhsize > 0)  /* not the dummy node? */ | ||
|  |     luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { | ||
|  |   int nsize = allocsizenode(t); | ||
|  |   luaH_resize(L, t, nasize, nsize); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i | ||
|  | */ | ||
|  | static void rehash (lua_State *L, Table *t, const TValue *ek) { | ||
|  |   unsigned int asize;  /* optimal size for array part */ | ||
|  |   unsigned int na;  /* number of keys in the array part */ | ||
|  |   unsigned int nums[MAXABITS + 1]; | ||
|  |   int i; | ||
|  |   int totaluse; | ||
|  |   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */ | ||
|  |   na = numusearray(t, nums);  /* count keys in array part */ | ||
|  |   totaluse = na;  /* all those keys are integer keys */ | ||
|  |   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */ | ||
|  |   /* count extra key */ | ||
|  |   na += countint(ek, nums); | ||
|  |   totaluse++; | ||
|  |   /* compute new size for array part */ | ||
|  |   asize = computesizes(nums, &na); | ||
|  |   /* resize the table to new computed sizes */ | ||
|  |   luaH_resize(L, t, asize, totaluse - na); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** }============================================================= | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | Table *luaH_new (lua_State *L) { | ||
|  |   GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table)); | ||
|  |   Table *t = gco2t(o); | ||
|  |   t->metatable = NULL; | ||
|  |   t->flags = cast_byte(~0); | ||
|  |   t->array = NULL; | ||
|  |   t->sizearray = 0; | ||
|  |   setnodevector(L, t, 0); | ||
|  |   return t; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void luaH_free (lua_State *L, Table *t) { | ||
|  |   if (!isdummy(t)) | ||
|  |     luaM_freearray(L, t->node, cast(size_t, sizenode(t))); | ||
|  |   luaM_freearray(L, t->array, t->sizearray); | ||
|  |   luaM_free(L, t); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static Node *getfreepos (Table *t) { | ||
|  |   if (!isdummy(t)) { | ||
|  |     while (t->lastfree > t->node) { | ||
|  |       t->lastfree--; | ||
|  |       if (ttisnil(gkey(t->lastfree))) | ||
|  |         return t->lastfree; | ||
|  |     } | ||
|  |   } | ||
|  |   return NULL;  /* could not find a free place */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** inserts a new key into a hash table; first, check whether key's main | ||
|  | ** position is free. If not, check whether colliding node is in its main | ||
|  | ** position or not: if it is not, move colliding node to an empty place and | ||
|  | ** put new key in its main position; otherwise (colliding node is in its main | ||
|  | ** position), new key goes to an empty position. | ||
|  | */ | ||
|  | TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { | ||
|  |   Node *mp; | ||
|  |   TValue aux; | ||
|  |   if (ttisnil(key)) luaG_runerror(L, "table index is nil"); | ||
|  |   else if (ttisfloat(key)) { | ||
|  |     lua_Integer k; | ||
|  |     if (luaV_tointeger(key, &k, 0)) {  /* does index fit in an integer? */ | ||
|  |       setivalue(&aux, k); | ||
|  |       key = &aux;  /* insert it as an integer */ | ||
|  |     } | ||
|  |     else if (luai_numisnan(fltvalue(key))) | ||
|  |       luaG_runerror(L, "table index is NaN"); | ||
|  |   } | ||
|  |   mp = mainposition(t, key); | ||
|  |   if (!ttisnil(gval(mp)) || isdummy(t)) {  /* main position is taken? */ | ||
|  |     Node *othern; | ||
|  |     Node *f = getfreepos(t);  /* get a free place */ | ||
|  |     if (f == NULL) {  /* cannot find a free place? */ | ||
|  |       rehash(L, t, key);  /* grow table */ | ||
|  |       /* whatever called 'newkey' takes care of TM cache */ | ||
|  |       return luaH_set(L, t, key);  /* insert key into grown table */ | ||
|  |     } | ||
|  |     lua_assert(!isdummy(t)); | ||
|  |     othern = mainposition(t, gkey(mp)); | ||
|  |     if (othern != mp) {  /* is colliding node out of its main position? */ | ||
|  |       /* yes; move colliding node into free position */ | ||
|  |       while (othern + gnext(othern) != mp)  /* find previous */ | ||
|  |         othern += gnext(othern); | ||
|  |       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */ | ||
|  |       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */ | ||
|  |       if (gnext(mp) != 0) { | ||
|  |         gnext(f) += cast_int(mp - f);  /* correct 'next' */ | ||
|  |         gnext(mp) = 0;  /* now 'mp' is free */ | ||
|  |       } | ||
|  |       setnilvalue(gval(mp)); | ||
|  |     } | ||
|  |     else {  /* colliding node is in its own main position */ | ||
|  |       /* new node will go into free position */ | ||
|  |       if (gnext(mp) != 0) | ||
|  |         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */ | ||
|  |       else lua_assert(gnext(f) == 0); | ||
|  |       gnext(mp) = cast_int(f - mp); | ||
|  |       mp = f; | ||
|  |     } | ||
|  |   } | ||
|  |   setnodekey(L, &mp->i_key, key); | ||
|  |   luaC_barrierback(L, t, key); | ||
|  |   lua_assert(ttisnil(gval(mp))); | ||
|  |   return gval(mp); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** search function for integers | ||
|  | */ | ||
|  | const TValue *luaH_getint (Table *t, lua_Integer key) { | ||
|  |   /* (1 <= key && key <= t->sizearray) */ | ||
|  |   if (l_castS2U(key) - 1 < t->sizearray) | ||
|  |     return &t->array[key - 1]; | ||
|  |   else { | ||
|  |     Node *n = hashint(t, key); | ||
|  |     for (;;) {  /* check whether 'key' is somewhere in the chain */ | ||
|  |       if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key) | ||
|  |         return gval(n);  /* that's it */ | ||
|  |       else { | ||
|  |         int nx = gnext(n); | ||
|  |         if (nx == 0) break; | ||
|  |         n += nx; | ||
|  |       } | ||
|  |     } | ||
|  |     return luaO_nilobject; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** search function for short strings | ||
|  | */ | ||
|  | const TValue *luaH_getshortstr (Table *t, TString *key) { | ||
|  |   Node *n = hashstr(t, key); | ||
|  |   lua_assert(key->tt == LUA_TSHRSTR); | ||
|  |   for (;;) {  /* check whether 'key' is somewhere in the chain */ | ||
|  |     const TValue *k = gkey(n); | ||
|  |     if (ttisshrstring(k) && eqshrstr(tsvalue(k), key)) | ||
|  |       return gval(n);  /* that's it */ | ||
|  |     else { | ||
|  |       int nx = gnext(n); | ||
|  |       if (nx == 0) | ||
|  |         return luaO_nilobject;  /* not found */ | ||
|  |       n += nx; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** "Generic" get version. (Not that generic: not valid for integers, | ||
|  | ** which may be in array part, nor for floats with integral values.) | ||
|  | */ | ||
|  | static const TValue *getgeneric (Table *t, const TValue *key) { | ||
|  |   Node *n = mainposition(t, key); | ||
|  |   for (;;) {  /* check whether 'key' is somewhere in the chain */ | ||
|  |     if (luaV_rawequalobj(gkey(n), key)) | ||
|  |       return gval(n);  /* that's it */ | ||
|  |     else { | ||
|  |       int nx = gnext(n); | ||
|  |       if (nx == 0) | ||
|  |         return luaO_nilobject;  /* not found */ | ||
|  |       n += nx; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | const TValue *luaH_getstr (Table *t, TString *key) { | ||
|  |   if (key->tt == LUA_TSHRSTR) | ||
|  |     return luaH_getshortstr(t, key); | ||
|  |   else {  /* for long strings, use generic case */ | ||
|  |     TValue ko; | ||
|  |     setsvalue(cast(lua_State *, NULL), &ko, key); | ||
|  |     return getgeneric(t, &ko); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** main search function | ||
|  | */ | ||
|  | const TValue *luaH_get (Table *t, const TValue *key) { | ||
|  |   switch (ttype(key)) { | ||
|  |     case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key)); | ||
|  |     case LUA_TNUMINT: return luaH_getint(t, ivalue(key)); | ||
|  |     case LUA_TNIL: return luaO_nilobject; | ||
|  |     case LUA_TNUMFLT: { | ||
|  |       lua_Integer k; | ||
|  |       if (luaV_tointeger(key, &k, 0)) /* index is int? */ | ||
|  |         return luaH_getint(t, k);  /* use specialized version */ | ||
|  |       /* else... */ | ||
|  |     }  /* FALLTHROUGH */ | ||
|  |     default: | ||
|  |       return getgeneric(t, key); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** beware: when using this function you probably need to check a GC | ||
|  | ** barrier and invalidate the TM cache. | ||
|  | */ | ||
|  | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { | ||
|  |   const TValue *p = luaH_get(t, key); | ||
|  |   if (p != luaO_nilobject) | ||
|  |     return cast(TValue *, p); | ||
|  |   else return luaH_newkey(L, t, key); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { | ||
|  |   const TValue *p = luaH_getint(t, key); | ||
|  |   TValue *cell; | ||
|  |   if (p != luaO_nilobject) | ||
|  |     cell = cast(TValue *, p); | ||
|  |   else { | ||
|  |     TValue k; | ||
|  |     setivalue(&k, key); | ||
|  |     cell = luaH_newkey(L, t, &k); | ||
|  |   } | ||
|  |   setobj2t(L, cell, value); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int unbound_search (Table *t, unsigned int j) { | ||
|  |   unsigned int i = j;  /* i is zero or a present index */ | ||
|  |   j++; | ||
|  |   /* find 'i' and 'j' such that i is present and j is not */ | ||
|  |   while (!ttisnil(luaH_getint(t, j))) { | ||
|  |     i = j; | ||
|  |     if (j > cast(unsigned int, MAX_INT)/2) {  /* overflow? */ | ||
|  |       /* table was built with bad purposes: resort to linear search */ | ||
|  |       i = 1; | ||
|  |       while (!ttisnil(luaH_getint(t, i))) i++; | ||
|  |       return i - 1; | ||
|  |     } | ||
|  |     j *= 2; | ||
|  |   } | ||
|  |   /* now do a binary search between them */ | ||
|  |   while (j - i > 1) { | ||
|  |     unsigned int m = (i+j)/2; | ||
|  |     if (ttisnil(luaH_getint(t, m))) j = m; | ||
|  |     else i = m; | ||
|  |   } | ||
|  |   return i; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | ** Try to find a boundary in table 't'. A 'boundary' is an integer index | ||
|  | ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). | ||
|  | */ | ||
|  | int luaH_getn (Table *t) { | ||
|  |   unsigned int j = t->sizearray; | ||
|  |   if (j > 0 && ttisnil(&t->array[j - 1])) { | ||
|  |     /* there is a boundary in the array part: (binary) search for it */ | ||
|  |     unsigned int i = 0; | ||
|  |     while (j - i > 1) { | ||
|  |       unsigned int m = (i+j)/2; | ||
|  |       if (ttisnil(&t->array[m - 1])) j = m; | ||
|  |       else i = m; | ||
|  |     } | ||
|  |     return i; | ||
|  |   } | ||
|  |   /* else must find a boundary in hash part */ | ||
|  |   else if (isdummy(t))  /* hash part is empty? */ | ||
|  |     return j;  /* that is easy... */ | ||
|  |   else return unbound_search(t, j); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #if defined(LUA_DEBUG)
 | ||
|  | 
 | ||
|  | Node *luaH_mainposition (const Table *t, const TValue *key) { | ||
|  |   return mainposition(t, key); | ||
|  | } | ||
|  | 
 | ||
|  | int luaH_isdummy (const Table *t) { return isdummy(t); } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | } // end NS_SLUA
 |